Nucleotides as anti-HBV agents

Radhakrishnan P. Iyer, Ph.D.

Spring Bank Technologies, Inc.,

113 Cedar Street, Milford, MA 01757, USA. kiyer@springbanktech.com

Challenges in Antiviral Drug Discovery

Viruses cause life-threatening illnesses worldwide

Discovery Issues

Lack of druggable targets

Emergence of resistant mutants

Therapeutic Issues

Rapid emergence of antiviral resistance

Dose-limiting toxicity

Combinatorial library based upon nucleotide scaffold as a strategy for drug discovery

Phosphate groups is key binding element in nucleotide – staphylococal nuclease interactions

Nucleotide library in drug discovery

Validation of nucleotide library approach Discovery of anti-HBV agents

National Institutes of Health (2002)

Global Crisis due to HBV Infection

- HBV causes both acute and chronic infection
 - 2 billion infected world-wide
 - ✓ About 350 million are chronically infected
 - 1 million deaths per year

Transmision routes:

- Sexual intercourse
- ✓ Intravenous drug use
- Blood products

HBV Life Cycle

Phenotypic Approach to HBV Lead Discovery

The library of nucleotides

A library of di-, and tri-nucleotides

Linkage

Sugar conformation

Nucleobase

Antiviral Screening

Actives

Lead

Lead discovery using cell-based antiviral assay

Distribution of actives

Quantitate HBV DNA Cytotoxicity
Southern blot analysis assay
(antiviral assay)

In collaboration with Dr. Brent Korba, Georgetown University

Lead Discovery Highlights - HBV Program

- ✓ Over 1400 compounds screened in assay
- ✓ Four potent compounds discovered following SAR.
- ✓ Novel Di-, and trinucleotide compounds
- ✓ High safety index ($CC_{50}/EC_{50} > 1000$)
- ✓ Potency , EC₅₀, 0.3 micromolar, comparable to Adefovir

SB 9000 - a Novel Anti-HBV Nucleotide

SB 9000 analogs are intracellular inhibitors of HBV replication

Integrated HBV DNA W VNQ NG NBH

Southern blot analysis of HBV DNA after 14 days treatment

In collaboration with Dr. Brent Korba, Georgetown University Di-, and tri-nucleotide compounds inhibit HBV Endogenous Polymerase

Huh 7 cells transfected with HBV DNA were treated with 10 uM of each compound for 72 h.

In collaboration with University of Texas,

San Antonio

Spring Bank
Technologies, Inc.

Multiple mechanisms of action of SB 9000

Inhibits HBV DNA synthesis

Inhibits viral polymerase by a mechanism other than chain termination

Inhibition of priming step during viral nucleic acid synthesis

Anti-HBV profile of SB 9000

Combination with

SB 9000

Moderately synergistic

Additive to strong

antagonist

No synergistic cytotoxicity observed

SB 9000 and analogs are potent inhibitors of resistant HBV mutants

HBV type	Compound EC ₉₀	
	3ТС	SB 9000
Wild type	0.6	9.0
M204 v	>100	9.8
M204i	>100	10
L180m	18	12

Cultures were treated for three days beginning 72 hours post-transfection, four replicates per concentration. S.D. not shown. Activity comparable to adefovir

In collaboration with Dr. Brent Korba, Georgetown University

SB 9000 is a selective antiviral agent

	SB 10001	SB 9000
	IC ₅₀ (uM)	IC ₅₀ (uM)
HBV	0.6 to 1.1	0.5 to 1.5
BVDV (NADL)	> 50	> 50
HCMV (AD169)	> 20	> 20
TICMV (AD103)	<i>></i> 20	720
YFV	> 50	> 50
HeA (NOE)	> 20	> 20
HSV (KOS)	> 20	> 20
HIV-1 (IIIb)	> 2	> 2

Collaborative study: Mark Wainberg (HIV), Brent Korba (HBV) and Viridae sciences (YFV)

Efficacy Studies of SB 9000 in Animal Models of HBV

Antiviral evaluation of SB 9000 in transgenic mouse model of HBV

Initial high-dose study

- ◆14-day daily administration IP route
- ◆100 mg/Kg SB 9000, ADV 10 mg/Kg
- **★End point**: reduction in Liver HBV DNA on day 14 quantitative PCR and southern blot analysis

Dose-response study

- EC₅₀ of SB 9000 is <1 mg/Kg
- More potent than adefovir

SB 9000 shows strong anti-HBV activity in transgenic Mice model of HBV infection

Southern blot analysis of liver HBV DNA following 14-day treatment

In collaboration with Dr. John Morrey, Utah State University

species

Drug Development

Pharmaceutical properties of SB 9000

 Metabolically stable in vitro and in vivo

 Significant tissue disposition in liver

Issues

- Not orally bioavailable
- Not stable in gastric fluid
- Not much known about nucleotide drug transporters in GI tract

Tripartate prodrugs of SB 9000 for oral bioavailability

SB 9000 prodrugs

- Well-established drug regeneration pathway
- Stable in GI tract
- Properties suitable for Formulation
- High safety
- Orally bioavailable

Characteristics of some SB 9000 prodrugs

Serum conversion

HLCprofiledepictingthekinetics of conversion of Produgto SB9000 inrabbit serum

Stability in gastric fluid

Antiviral and safety studies of oral SB 9000 prodrugs in transgenic mice

Initial high-dose study

Animals: male and female transgenic mice (founder 1.3.32)

Placebo: 0.05 M citric acid, pH 2.0

Adefovir 10 mg/kg/day positive control

Prodrug	QPCR Liver HBV DNA pg/microg	Southern blot Liver HBVDNApg/microg
SB 9001	24.3 ± 19	10.5 ± 9.3**
400 mg/Kg/day		
SB 9002-1	13.3 ± 12	5.7 ± 3.2**
300 mg/Kg/day		
Placebo	65 ± 79	57 ± 36

Action Plan for development of SB 9000

IND-tox studies planned for 2007

IND 2008

Initiate clinical trials

SB 9000 program summary

Potent, safe, selective "first in class" anti-HBV agent with novel mechanism of action

Synergistic with other antivirals and active against 3TC-resistant strains

An orally bioavailable prodrug has been developed that is an active anti-HBV agent in vivo

Nucleotide Discovery concept broadly applicable to other disease targets

Acknowledgments

In vitro studies

Dr. Brent Korba, Georgetown University

Professor Robert Lanford, University of Texas

In vivo studies

Professor John Morrey, Utah State University

Dr.Bud Tennant, Cornell University

- Biology and chemistry team at Origenix Technologies
- Spring Bank technologies, scientific team
 - S. Padmanabhan, Ph.D. John Coughlin, M.A.
 - G. Zhang, Ph.D.
 - C. Kirk, Ph.D.

We Thank

NIH, NIAID for the Grant award UO1 AI 058270 [2003-2008]

Special thanks to Dr. Diana Berard, Program Officer, NIAID

R. P. Iyer, Ph.D.

Spring Bank Technologies, Inc., 113 Cedar Street, Milford, MA 01757, USA.

kiyer@springbanktech.com

508-473-5993